Abstract Algebra IV Final Exam

Note: You may use any result proved in class, *unless* the question is asking you to (re)prove a result that we have already proved in class! On the other hand, if you need to use the result of a *homework problem* to answer a question below, then you must put down the solution to that homework problem also (i.e., you cannot simply quote the result of a homework problem).

Note: Each problem is worth the same amount.

Remark: You have seen almost all these problems before in your homework.

- (1) Let f(x) be an irreducible polynomial of degree n with coefficients in a field F, and let K be an extension field of F. Assume that [K:F] is finite, and relatively prime to n. Show that f(x) remains irreducible in K[x]. Use this to show that $x^5 - 9x^3 + 15x + 6$ is irreducible over $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- (2) Let K be a (finite) Galois extension of F, and let $a \in K$. Let n = [K : F], $r = [F(a) : F], G = \operatorname{Gal}(K/F)$ and $H = \operatorname{Gal}(K/F(a))$. Let τ_1, \ldots, τ_r be left coset representatives of H in G. Show that the minimum polynomial $m_{a,F}$ of a over F is $\prod_{i=1}^{r} (x - \tau_i(a))$. Conclude that $\prod_{a \in G} (x - g(a)) = (m_{a,F})^{n/r}$.
- (3) Let $K = \mathbb{Q}(\omega_n)$, where ω_n is the primitive *n*-th root of unity $e^{2\pi i/n}$ $(n \ge 3)$.
 - (a) Show that the fixed field of K under complex conjugation is $\mathbb{Q}(\tau_n)$, where $\tau_n = \omega_n + \omega_n^{-1}.$ (b) Now take *n* to be of the form $2^{m+2}, m \ge 1$. Show that $\mathbb{Q}(\tau_n)$ is

$$\mathbb{Q}\left(\sqrt{2+\sqrt{2+\sqrt{\cdots+\sqrt{2}}}}\right)$$

where the square root is taken m times.

- (4) Show that every element in a finite field is a sum of two squares.
- (5) Let K be an algebraically closed field and F a subfield of K. If $\phi: K \mapsto K$ is an F-homomorphism, and if $\operatorname{trdeg}(K/F) < \infty$, show that ϕ is surjective (so ϕ is an F-automorphism of K).
- (6) Let \mathbb{Q} be the algebraic closure of \mathbb{Q} in \mathbb{C} . Given $a \in \mathbb{Q}$, let L be a subfield of \mathbb{Q} that is maximal with respect to not containing a. (Thus, if E is a subfield of $\overline{\mathbb{Q}}$ that strictly contains L, then E contains a.) Show that
 - (a) L(a) is a finite extension of L.
 - (b) L(a)/L is normal. (Hint: If a' is another root of $m_{a,L}$, what can you say about L(a')?)
 - (c) Show that L(a)/L is cyclic, of prime degree. (Hint: Apply the Galois correspondence to proper subgroups of Gal(L(a)/L).)